lunes, 3 de febrero de 2014

EL ACERO

¿Que es el acero?
Es una aleación de hierro con carbono, que varia entre un 0,03% y un 1,075% en peso de su composición, dependiendo del grado. Si la aleación posee una concentración de carbono mayor al 2,0% se producen fundiciones que, en oposición al acero, son mucho más frágiles y no es posible forjarlas sino que deben ser moldeadas.

Estas propiedades fisicas que vamos a poner a continucion son bastante genericas puesto que dependiendo de los procesos que haya sufrido ese acero en su produccion varian unas respecto de otras.
Su densidad media es de 7850 kg/m³. En función de la temperatura el acero se puede contraer, dilatar o fundir.
El punto de fusión del acero depende del tipo de aleación y los porcentajes deelementos aleantes. El de su componente principal, el hierro es de alrededor de 1.510 °C en estado puro, sin embargo el acero presenta frecuentemente temperaturas de fusión de alrededor de 1.375 °C, y en general la temperatura necesaria para la fusión aumenta a medida que se aumenta el porcentaje de carbono y de otros aleantes. Por otra parte el acero rápido funde a 1.650 °C. Su puntode ebullición es de alrededor de 3.000 °C. Es un material muy tenaz, especialmente en alguna de las aleaciones usadas para fabricar herramientas.
Relativamente dúctil. Con él se obtienen hilos delgados llamados alambres.
Es maleable. Se pueden obtener láminas delgadas llamadas hojalata. La hojalata es una lámina de acero, de entre 0,5 y 0,12 mm de espesor, recubierta, generalmente de forma electrolítica, por estaño.
Permite una buena mecanización en máquinas herramientas antes de recibir un tratamiento térmico.
Algunas composiciones y formas del acero mantienen mayor memoria, y se deforman al sobrepasar su límite elástico.
La dureza de los aceros varía entre la del hierro y la que se puede lograr mediante su aleación u otros procedimientos térmicos o químicos entre los cuales quizá el más conocido sea el templado del acero, aplicable a aceros con alto contenido en carbono, que permite, cuando es superficial, conservar un núcleo tenaz en la pieza que evite fracturas frágiles. Aceros típicos con un alto grado de dureza superficial son los que se emplean en las herramientas de mecanizado, denominados aceros rápidos que contienen cantidades significativas de cromo, wolframio, molibdeno y vanadio. Los ensayos tecnológicos para medir la dureza son Brinell, Vickers y Rockwell, entre otros.
Se puede soldar con facilidad.
La corrosión es la mayor desventaja de los aceros ya que el hierro se oxida con suma facilidad incrementando su volumen y provocando grietas superficiales que posibilitan el progreso de la oxidación hasta que se consume la pieza por completo. Tradicionalmente los aceros se han venido protegiendo mediante tratamientos superficiales diversos. Si bien existen aleaciones con resistencia a la corrosión mejorada como los aceros de construcción «corten» aptos para intemperie (en ciertos ambientes) o los aceros inoxidables.
Posee una alta conductividad eléctrica. Aunque depende de su composición es aproximadamente de 3 · 106 S/m. En las líneas aéreas de alta tensión se utilizan con frecuencia conductores de aluminio con alma de acero proporcionando éste último la resistencia mecánica necesaria para incrementar los vanos entre la torres y optimizar el coste de la instalación.
Se utiliza para la fabricación de imanes permanentes artificiales, ya que una pieza de acero imantada no pierde su imantación si no se la calienta hasta cierta temperatura. La magnetización artificial se hace por contacto, inducción o mediante procedimientos eléctricos. En lo que respecta al acero inoxidable, al acero inoxidable ferrítico sí se le pega el imán, pero al acero inoxidable austenítico no se le pega el imán ya que la fase del hierro conocida como austenita no es atraída por los imanes. Los aceros inoxidables contienen principalmente níquel y cromo en porcentajes del orden del 10% además de algunos aleantes en menor proporción.
Un aumento de la temperatura en un elemento de acero provoca un aumento en la longitud del mismo. Este aumento en la longitud puede valorarse por la expresión: δL = α δ t° L, siendo a el coeficiente de dilatación, que para el acero vale aproximadamente 1,2 · 10−5 (es decir α = 0,000012). Si existe libertad de dilatación no se plantean grandes problemas subsidiarios, pero si esta dilatación está impedida en mayor o menor grado por el resto de los componentes de la estructura, aparecen esfuerzos complementarios que hay que tener en cuenta. El acero se dilata y se contrae según un coeficiente de dilatación similar al coeficiente de dilatación del hormigón, por lo que resulta muy útil su uso simultáneo en la construcción, formando un material compuesto que se denomina hormigón armado. El acero da una falsa sensación de seguridad al ser incombustible, pero sus propiedades mecánicas fundamentales se ven gravemente afectadas por las altas temperaturas que pueden alcanzar los perfiles en el transcurso de un incendio.
Diagrama Hierro-Carbono:
El diagrama de equilibrio representa las transformaciones que sufren los aceros con la temperatura, admitiendo que el calentamiento de la mezcla se realiza muy lentamente de modo que los procesos de homogeneización tienen tiempo para completarse. Dicho diagrama se obtiene experimentalmente identificando los puntos crítos, temperaturas a las que se producen las sucesivas transformaciones por métodos diversos.

Eutéctico para una concentración de 4,3% de carbono y a 1130ºC. Por debajo de esa temperatura es imposible encontrar ninguna aleación en estado líquido, es el punto en que se produce el cambio de estado para una única temperatura, formándose el constituyente ledeburita, característica del eutéctico.
Eutectoide para una concentración de 0,89% de carbono y a 723ºC. Por debajo de esta temperatura es imposible encontrar austenita como microconstituyente de los aceros, en ese punto se forma el constituyente del eutectoide, que es la perlita.
Por encima de la línea de liquidus la aleación solo se encuentra en estado líquido.
Por debajo de la línea de solidus la aleación solo se encuentra en estado sólido.
Entre las líneas de liquidus y solidus la aleación se encuentra en una zona bifásica donde coexisten la fase líquida y la fase sólida, aunque con microconstituyentes diferentes liquido y austenita, a la izquierda del diagrama  y líquido y cementita la derecha del diagrama.
Aleantes del acero:
Aluminio: se usa en algunos aceros de nitruración al Cr-Al-Mo de alta dureza en concentraciones cercanas al 1% y en porcentajes inferiores al 0,008% como desoxidante en aceros de alta aleación.
Boro: en muy pequeñas cantidades (del 0,001 al 0,006%) aumenta la templabilidad sin reducir la maquinabilidad, pues se combina con el carbono para formar carburos proporcionando un revestimiento duro. Es usado en aceros de baja aleación en aplicaciones como cuchillas de arado y alambres de alta ductilidad y dureza superficial. Utilizado también como trampa de nitrógeno, especialmente en aceros para trefilación, para obtener valores de N menores a 80 ppm.


Acería. Nótese la tonalidad del vertido.
Cobalto: muy endurecedor. Disminuye la templabilidad. Mejora la resistencia y la dureza en caliente. Es un elemento poco habitual en los aceros. Aumenta las propiedades magnéticas de los aceros. Se usa en los aceros rápidos para herramientas y en aceros refractarios.
Cromo: Forma carburos muy duros y comunica al acero mayor dureza, resistencia y tenacidad a cualquier temperatura. Solo o aleado con otros elementos, mejora la resistencia a la corrosión. Aumenta la profundidad de penetración del endurecimiento por tratamiento termoquímico como la carburación o la nitruración. Se usa en aceros inoxidables, aceros para herramientas y refractarios. También se utiliza en revestimientos embellecedores o recubrimientos duros de gran resistencia al desgaste, como émbolos, ejes, etc.
Molibdeno: es un elemento habitual del acero y aumenta mucho la profundidad de endurecimiento de acero, así como su tenacidad. Los aceros inoxidables austeníticos contienen molibdeno para mejorar la resistencia a la corrosión.
Nitrógeno: se agrega a algunos aceros para promover la formación de austenita.
Níquel: es un elemento gammageno permitiendo una estructura austenítica a temperatura ambiente, que aumenta la tenacidad y resistencia al impacto. El níquel se utiliza mucho para producir acero inoxidable, porque aumenta la resistencia a la corrosión.
Plomo: el plomo no se combina con el acero, se encuentra en él en forma de pequeñísimos glóbulos, como si estuviese emulsionado, lo que favorece la fácil mecanización por arranque de viruta, (torneado, cepillado, taladrado, etc.) ya que el plomo es un buen lubricante de corte, el porcentaje oscila entre 0,15% y 0,30% debiendo limitarse el contenido de carbono a valores inferiores al 0,5% debido a que dificulta el templado y disminuye la tenacidad en caliente. Se añade a algunos aceros para mejorar mucho la maquinabilidad.
Silicio: aumenta moderadamente la templabilidad. Se usa como elemento desoxidante. Aumenta la resistencia de los aceros bajos en carbono.
Titanio: se usa para estabilizar y desoxidar el acero, mantiene estables las propiedades del acero a alta temperatura. Se utiliza su gran afinidad con el Carbono para evitar la formación de carburo de hierro al soldar acero.
Wolframio: también conocido como tungsteno. Forma con el hierro carburos muy complejos estables y durísimos, soportando bien altas temperaturas. En porcentajes del 14 al 18 %, proporciona aceros rápidos con los que es posible triplicar la velocidad de corte de los aceros al carbono para herramientas.
Vanadio: posee una enérgica acción desoxidante y forma carburos complejos con el hierro, que proporcionan al acero una buena resistencia a la fatiga, tracción y poder cortante en los aceros para herramientas.
Tratamientos termicos:
Temple:s un tratamiento térmico consistente en el rápido enfriamiento de la pieza para obtener determinadas propiedades de los materiales. Se evita que los procesos de baja temperatura, tales como transformaciones de fase, se produzcan al sólo proporcionar una estrecha ventana de tiempo en el que la reacción es a la vez favorable termodinámicamente y posible cinéticamente. Por ejemplo, se puede reducir la cristalización y por lo tanto aumentar la tenacidad. Es utilizado para endurecer el acero mediante la introducción de martensita , en cuyo caso el acero debe ser enfriado rápidamente a través de su punto eutectoide, la temperatura a la que la austenita se vuelve inestable.

Recocido: es un tratamiento térmico cuya finalidad es el ablandamiento, la recuperación de la estructura o la eliminación de tensiones internas generalmente en metales.
El recocido se realiza en tres etapas: primero se calienta el material hasta la temperatura de recocido, después se mantiene la temperatura durante un tiempo determinado. Por último se deja enfriar el material lentamente. Se deben preparar debidamente las piezas que se vayan a recocer. Se debe eliminar la herrumbre y el óxido.
hay tres tipos de recocido:
-Recocido de eliminación de tensiones: por medio de la deformación en frío se presentan tensiones en el material. Dichas tensiones pueden provocar deformaciones en las piezas, pero pueden eliminarse mediante un recocido calentando el metal entre 550 y 650ºC y manteniendo la temperatura durante 30-120 minutos. Después se refrigera de forma lenta.
-Recocido de ablandamiento: los materiales templados o ricos en carbono (sobre 0,9%) son difíciles de trabajar mediante arranque de viruta (torneado, fresado, etc) o mediante deformación en frío. Para ablandar el material puede hacerse un recocido. Se calienta la pieza entre 650 y 750ºC tras lo cual se mantiene la temperatura durante 3-4 horas antes de disminuir lentamente su temperatura. Es habitual mantener una subida y bajada alternativa de la temperatura en torno a los 723ºC.
-Recocido normal: Mediante el recocido normal se afina el grano de la estructura y se compensan las irregularidades de las piezas producidas por deformaciones, ya sea en caliente o en frío, tales como doblado, fundición, soldadura, etc. El procedimiento consiste en calentar a temperaturas entre 750 y 980ºC, conforme al contenido de carbono del material, tras lo que se mantiene la temperatura para después dejar enfriar lentamente al aire.

Revenido: es un tratamiento térmico cuya funcion es variar su dureza y cambiar su resistencia mecánica. El tratamiento de revenido consiste en calentar al acero seguido del normalizado o templado, a una temperatura menor al punto crítico, seguido de un enfriamiento controlado que puede ser rápido cuando se deseen resultados elevados en tenacidad, o lento, para reducir al máximo las tensiones térmicas que puedan causar deformaciones.



No hay comentarios:

Publicar un comentario